UToledo News » Natural Sciences and Mathematics

Categories

Archives

Resources

Categories

Archives

Resources

Natural Sciences and Mathematics

New Chemistry Lab to be Dedicated in Honor of Water Quality Leader, UToledo alum Sept. 19

The University of Toledo is honoring a successful alumna who inspired generations of students to pursue careers in chemistry and focused her life’s work on improving water quality and the preservation of safe drinking water around the globe.

A dedication ceremony for the new Dr. Nina McClelland Laboratory for Water Chemistry and Environmental Analysis in The University of Toledo College of Natural Sciences and Mathematics will take place Thursday, Sept. 19, at 3:30 p.m. in Bowman-Oddy Laboratories Room 2059.

McClelland

The namesake of the new chemistry lab will attend the event.

“We are proud to recognize Dr. McClelland’s important contributions to science and to The University of Toledo,” UToledo President Sharon L. Gaber said. “Water quality is a critical area of research at our University, and this new lab will benefit our scientists and students in their search for solutions to protect public health and the environment.”

The lab features state-of-the-art equipment, including novel extraction and microextraction technology and high-resolution mass spectrometry, tandem mass spectrometry, and an advanced imaging system.

McClelland, UToledo dean emerita, retired from the University in 2011 after serving as dean of the UToledo College of Arts and Sciences, as well as working in the Provost’s Office. She began at UToledo in 2003 as an adjunct professor in the Department of Chemistry.

McClelland served as chair of the Board of Directors for the American Chemical Society, the world’s largest scientific organization. She also served as chair, president and chief executive officer during her more than 30 years with NSF International, an independent, not-for-profit organization dedicated to certifying products and writing standards for food, water and consumer goods.

She has served on several major committees, including the National Institute of Standards and Technology in the U.S. Department of Commerce, the National Drinking Water Advisory Council in the U.S. Environmental Protection Agency, and the Committee on Water Treatment Chemicals in the National Academy of Sciences’ National Research Council.

McClelland earned bachelor and master of science degrees from UToledo in 1951 and 1963, respectively. She received her doctoral degree in environmental chemistry from the University of Michigan in 1968. UToledo awarded her an honorary doctorate in science in 2003.

U.S. Department of Energy awards UToledo $750,000 to Improve Production of Hydrogen as Clean Fuel

From powering a car to a rocket, hydrogen holds promise as the clean-energy fuel of the future.

The University of Toledo is among 29 universities and organizations across the country to receive a total of $40 million from the U.S. Department of Energy for new projects focused on using hydrogen as fuel.

Yan

The goal of the H2@Scale concept is to enable affordable and reliable large-scale hydrogen generation, transport, storage and utilization in the United States and beyond.

NASA’s mission to Mars hinges on the ability to split water — in the form of ice — to produce hydrogen on the moon as fuel to reach the Red Planet.

Hydrogen also could be used on Earth to keep the electrical grid operating to power homes and businesses in the face of extreme weather or cyberattacks.

UToledo was awarded $750,000 to improve water-splitting, the process of breaking apart the water molecule, separating hydrogen from oxygen. The hydrogen, which produces only water when consumed in a fuel cell, can then be used as a clean fuel.

The photovoltaics team, led by Dr. Yanfa Yan, UToledo professor of physics, and Dr. Zhaoning Song, research assistant professor in the UToledo Department of Physics and Astronomy, will develop low-cost photoelectrodes for more efficient photoelectrochemical water splitting using innovative material from their highly successful perovskite solar cells. Perovskites are compound materials with a special crystal structure formed through chemistry.

The perovskite cells can have high efficiency, collecting more of the sun’s energy and transforming it into the electricity needed to split the water molecule and produce hydrogen.

“Perovskite absorbers have drawn extensive attention due to their demonstrated capability of fabricating solar cells with outstanding conversion efficiencies,” Yan said. “We are excited about this opportunity and eager to apply perovskite absorbers to advance the photoelectrochemical water-splitting technology.”

Funded through the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy with contribution from DOE’s Office of Nuclear Energy, the selected projects will advance hydrogen storage and infrastructure technologies and identify innovative concepts for hydrogen production and utilization, including electrical grid resiliency.

“The H2@Scale concept is a critical piece of the country’s comprehensive energy strategy and an enabler of multiple industries in our economy,” said U.S. Secretary of Energy Rick Perry. “As an energy carrier, hydrogen has the potential to unite our nation’s domestic energy resources. These selections support the Department of Energy’s mission and advances our commitment to enable economic growth and energy security through the development of more affordable hydrogen technologies.”

“Toledo is at the forefront of the development of innovative technologies that move our country and our world further,” said Congresswoman Marcy Kaptur. “I am pleased to see that The University of Toledo has been awarded this valuable $750,000 grant from the Department of Energy to facilitate the University’s important research into hydrogen as clean fuel and to cement our region as a clean energy, research and manufacturing hub.”

The U.S. produces more than 10 million tons of hydrogen, nearly one-seventh of the global supply, primarily for oil refining and fertilizer production.

Hydrogen infrastructure includes more than 1,600 miles of hydrogen pipeline, a growing network of stations, and thousands of tons of storage in underground caverns.

Yan and Song are members of the UToledo Wright Center for Photovoltaics Innovation and Commercialization.

Scientists Discover Single Gene That Explains Songbird Migration

Ornithologists at The University of Toledo played a critical role in new collaborative research identifying a single gene that defines whether rare, tiny songbirds that reproduce in the Great Lakes region and Appalachian Mountains spend their winters in South America or Central America.

Dr. Henry Streby, assistant professor in the UToledo Department of Environmental Sciences, and Gunnar Kramer, Ph.D. candidate in environmental sciences and UToledo graduate dean’s fellow, laid the groundwork for the genetics discovery published this week in the journal Proceedings of the National Academy of Sciences.

A golden-winged warbler carried a geolocator in Minnesota. UToledo researchers created the tiny tracker to find out where the songbirds migrated for the winter.

With collaborators at Cornell University, Penn State and the University of Colorado, the team’s findings may have important conservation implications for the declining populations of golden-winged warblers.

Starting six years ago, the UToledo team led a massive collaborative field study: Across eastern North America, they caught golden-winged warblers on their breeding grounds, gathered blood samples, placed tiny geolocator technology on the birds, and completed long-distance, cutting-edge migration tracking analysis. Streby and Kramer then gave the samples and data to genetics researchers at Penn State and the Cornell Lab of Ornithology who performed whole genome resequencing.

“Only one gene tells the story of the final wintering destination, and it makes sense because it is affiliated with muscles and movement in humans,” Streby said. “Migration is a very complex set of behavioral and physiological traits, and we know this one gene can’t be responsible for all of it. But it’s a critical first step that gives everyone in the field something to build on. This exciting ecology and evolutionary discovery proves the powerful potential of research collaboration.”

Streby

Streby and Kramer already had answered the question of where these birds go: Golden-winged warblers from declining populations spend winters in northern South America. Stable populations of the species spend winters in Central America.

Researchers at the collaborating universities then used the data and blood samples from the migrating birds to investigate genetic differences between birds that winter in Central America and those that winter in South America. The majority of these differences occurred in a small region on the bird’s Z chromosome, a sex-determining chromosome like the X and Y chromosomes in humans. Only one gene, called VPS13A, was present in this region.

Although the gene does not yet have any known function in birds, in humans it is associated with the neurodegenerative disorder chorea-acanthocytosis, which affects movement.

Gunnar Kramer held a golden-winged warbler, which carried a geolocator. Researchers attached the tiny backpack to the bird in 2015 and recovered it in 2016. The data on the geolocator helped Kramer understand the warbler’s migratory route and winter location.

“In this study, we found only one gene associated with the final wintering destination of golden-winged and blue-winged warblers,” said Dr. David Toews, assistant professor of biology at Penn State and leader of the research team. “As we come to better understand the role of this gene in humans, we may also gain important insights to its role in migration in birds.”

According to the researchers, the gene appears to be a target of natural selection in birds that winter in South America.

“Golden-winged warblers are rapidly declining in the Appalachian Mountains. Conservation efforts have focused on protecting the breeding grounds, which is important, but declines also appear strongly related to habitat alteration and destruction in the wintering grounds,” Streby said.

“The global attention on the fires in the Amazon highlight the importance of these South American habitats, and these migratory birds illustrate an inextricable link between hemispheres,” Toews said.

For Streby and Kramer at UToledo, collecting blood samples from the golden-winged warblers to be used for a later genetics’ investigation was a side project to their study identifying the migratory connectivity of the species. They also recorded the birds singing across their whole range and collected feather samples.

It’s what Streby calls “while-you’re-there science.”

“It’s important to conduct all of the useful science while you have the opportunity because you can’t fund six different projects by six research teams to address six questions in the same study system,” Streby said. “For the DNA samples, we knew we needed to find the right researcher who was looking for migration genes.”

Kramer met Toews and Dr. Scott Taylor, assistant professor of ecology and evolutionary biology at the University of Colorado, at the 2016 North American Ornithological Conference in Washington, D.C.

“I quickly realized we had valuable genetic samples that they needed to do exciting complementary research, and we were happy to share our science,” Kramer said. “By working together, we now know what we suspected — there is a genetic component to migration. However, we’re fascinated it appears to be just one gene that explains the major migration divide in the system.”

The study was supported by the Natural Sciences and Engineering Research Council of Canada, the National Science Foundation, The University of Toledo, the Cornell Lab of Ornithology, the United States Geological Survey, the United Sates Fish and Wildlife Service, the University of Minnesota, and the University of Tennessee.

UToledo physicists awarded $7.4 million to rev up solar technology to power space vehicles

The U.S. Air Force awarded a team of physicists at The University of Toledo $7.4 million to enhance the reliability and efficiency of lightweight power to improve the safety and effectiveness of Department of Defense missions.

Dr. Randall Ellingson, professor in the UToledo Department of Physics and Astronomy, and the UToledo Wright Center for Photovoltaics Innovation and Commercialization will lead the five-year contract to develop solar technology that is lightweight, flexible, highly efficient and durable in space so it can provide power for space vehicles using sunlight.

Dr. Randall Ellingson has received $7.4 million from the U.S. Air Force to develop solar technology that is lightweight, flexible, highly efficient and durable to improve the safety and effectiveness of Department of Defense missions.

Ellingson is applying his persistent dedication to discovery in the fast-growing field of photovoltaics to champion the U.S. armed forces by advancing power generation technologies for space vehicle applications to survive natural and man-made threats.

“Our goal is to protect our troops and enhance national security by accelerating the performance of solar cells,” Ellingson said. “Our primary goal is to reduce the power system payload by developing highly efficient and lightweight technology to replace liquid fuels and minimize battery storage needs.”

In order for the technology to achieve both high efficiency and the flexibility to be used on a curved surface like a wing or fuselage, Ellingson’s team is making tandem solar cells — two different solar cells stacked on top of each other that use two different parts of the sun’s spectrum — on very thin, flexible supporting material.

UToledo physicists have had great success drawing record levels of power from the same amount of sunlight using the tandem technique with what are called perovskites, compound materials with a special crystal structure formed through chemistry.

“The University of Toledo is a worldwide leader driving innovation in photovoltaics research, education and application,” Congresswoman Marcy Kaptur said. “This critical collaboration with the U.S. Air Force strengthens national security and fuels a cleaner energy future for generations to come.”

UToledo’s flexible, lightweight, low-cost technology will be tested under space-like radiation exposure.

“In outer space, the radiation environment is much more harsh, where high-energy photons and particles, arising from both our sun and our galaxy, can damage the solar cells,” Ellingson said.

“We are proud our photovoltaics team at The University of Toledo has been selected once again to use its state-of-the-art expertise to advance Air Force missions in service to the nation,” Dr. Frank Calzonetti, UToledo vice president for research, said. “This major award demonstrates the high regard the U.S. Air Force has in The University of Toledo’s solar energy research capabilities and the confidence in our research team. Dr. Ellingson has performed exceptionally well in meeting the high demands of the Air Force in providing research that supports the nation’s defense posture.”

For more than three decades, The University of Toledo has focused with precision on the potential of photovoltaics to transform the world and improve sustainability to combat the energy crisis.

Harold McMaster, an inventor and namesake of UToledo’s McMaster Hall, pioneered the vision for commercializing solar energy in northwest Ohio and donated funds to UToledo to gather great minds and craft solutions.

One of the world’s largest manufacturer of solar cells, First Solar, originated in UToledo laboratories.

The University created the Wright Center for Photovoltaics Innovation and Commercialization in January 2007 with $18.6 million in support from the Ohio Department of Development, along with matching contributions of $30 million from federal agencies, universities and industrial partners. The center works to strengthen the photovoltaics and manufacturing base in Ohio, through materials and design innovation.

Lake Erie Center to Host Farmers’ Market This Summer

Stop by the Farmers’ Market at the Lake Erie Center and pick up some fresh produce, bread, handcrafted beauty products and more.

Local farmers will be at the center, 6200 Bayshore Road in Oregon, Friday, Aug. 9 and Sept. 6, from 3 to 6 p.m.

Dr. Thomas Bridgeman, director of the UToledo Lake Erie Center and professor of ecology, picked up some kettle corn and vegetables at the Farmers’ Market last summer at the Lake Erie Center.

“We are looking forward to a wide selection of farmers, vendors and food trucks at our markets this summer,” said Rachel Lohner, education program leader at the Lake Erie Center.

“We feel these markets are important because they give us a chance to interact with the community and educate the public about the research that occurs at the Lake Erie Center,” she added.

Due to the rough growing season, the first market scheduled in July was canceled.

“We also value the markets as a way to partner with local farmers and show that we appreciate the efforts they devote to feeding us and protecting our environment at the same time,” Lohner said.

For more information or to join the Lake Erie Center Farmers’ Market as a vendor, call 419.530.8360 or email lakeeriecenter@utoledo.edu.

Algae Researchers to Fan Out Across Lake Erie to Collect Water Samples Aug. 7

Five years after a water crisis in Toledo left half a million residents without safe tap water for three days, environmental scientists from the U.S. and Canada will board research vessels and fan out across western Lake Erie to collect water samples at nearly 200 locations in four hours in a united effort to create a high-resolution picture of this summer’s harmful algal bloom (HAB) and ultimately protect the public drinking water supply.

The second annual HABs Grab on Wednesday, Aug. 7, will bring together researchers from The University of Toledo, National Oceanic and Atmospheric Association (NOAA) Great Lakes Environmental Research Laboratory, Ohio State University, University of Michigan, Bowling Green State University, Wayne State University, Michigan Technological University, Cooperative Institute for Great Lakes Research and LimnoTech. The HABs Grab has nearly doubled in size this year with the addition of Canadian partners, including the University of Windsor, Environment and Climate Change Canada, and the Department of Fisheries and Oceans.

Dr. Thomas Bridgeman, left, and Zachary Swan, a graduate student, examined a YSI EXO sonde, which is used to measure water quality parameters, including how much blue-green algae is present, temperature, clarity, oxygen levels, turbidity and pH.

A major goal is to estimate the mass of total microcystin toxin for one day during the peak of algal bloom season, as well as to characterize the different forms of microcystin and the genes that produce them.

“Collaboration is critical in our efforts to understand a harmful algal bloom as large as Lake Erie’s — the lake is simply too large for one organization to handle,” Dr. Thomas Bridgeman, director of the UToledo Lake Erie Center and professor of ecology, said. “This massive one-day sampling event allows us to not only analyze the current bloom, but focus on unraveling the mystery of why some algal blooms are highly toxic, while others are less so.”

Bridgeman, who has studied algae in the Great Lakes for nearly two decades, and his research team at UToledo collect samples and track cyanobacteria throughout Lake Erie’s western basin once a week every summer during algal bloom season.

“Harmful algal blooms are an international issue,” Bridgeman said. “The ultimate solution is to prevent blooms from growing in the first place by preventing water pollution. In the meantime, discovering what triggers a bloom to start producing toxins would be a large step toward protecting people, pets and wildlife.”

HABs Grab is funded by NOAA’s ECOHAB research program.

“The main goal of the project is to develop a bloom toxicity forecast, and the HABs Grab provides data to estimate toxin mass in the lake,” said Dr. Justin Chaffin, leader of the HABs Grab project who is based at Ohio State University’s Stone Laboratory. Chaffin earned his Ph.D. in biology from UToledo in 2013 while studying in Bridgeman’s lab.

“This coordinated effort will assist in improving the accuracy of microcystin toxin concentrations in HAB forecast products,” Deborah Lee, director of the NOAA Great Lakes Environmental Research Laboratory, said. “It is a true testament to collaboration and coordination across institutional and international boundaries.”

The Lake Erie Center is UToledo’s freshwater research and science education campus focused on finding solutions to water quality issues that face the Great Lakes, including harmful algal blooms, invasive species and pollutants.

UToledo Biodesign Teams Compete at International Biodesign Challenge in New York

Two teams from The University of Toledo Biodesign Challenge competed in June at the international Biodesign Challenge Summit in New York.

“In only our second year of competition, UToledo once again was on the international map and competed brilliantly against strong competition in New York City for the Biodesign Challenge Summit,” said Barbara Miner, chair and professor of art.

Students on the PlastiGrow team are, from left, McKenzie Dunwald, Michael Socha, Colin Chalmers and Ysabelle Yrad.

The UToledo team btilix was one of only nine global finalists for the overall award out of 34 institutions that made it to the international competition, and PlastiGrow was runner-up in the Stella McCartney Prize for Sustainable Fashion. McCartney is the daughter of Paul McCartney and a well-known fashion designer.

According to the Biodesign Challenge website, the McCartney prize is awarded to the Biodesign Challenge team that “explores and/or develops proofs of concept for fashion alternatives that are biological, sustainable, ethical and free of animal products. We ask the teams to explore lifecycles, production processes, disposal and potential for recycling.”

PlastiGrow developed a biodegradable material that can be used for many products in place of conventional plastic; this greatly reduces the cost and energy spent on waste and recycling efforts. Team members are McKenzie Dunwald, art; Michael Socha, bioengineering; Colin Chalmers, art; and Ysabelle Yrad, environmental science.

Btilix team members are, from left, Tyler Saner, Sarah Mattei, Courtney Kinzel, Timothy Wolf and Sherin Aburidi.

The UToledo team btilix developed a disinfectant spray for combating antibiotic-resistant superbugs. The students on the btilix team are Tyler Saner, art; Sarah Mattei, environmental science; Courtney Kinzel, environmental science; Timothy Wolf, bioengineering; and Sherin Aburidi, bioengineering.

“We hit it out of the ballpark through sheer hard-working collaboration on the part of our cross-disciplinary teams of students, as well as the outstanding effort, creative foresight and sheer dedication of Assistant Professors Eric Zeigler and Brian Carpenter,” Miner said. “Their work, advancing the sophisticated presentations, modeling integrative thinking, and employing best pedagogical practices, as well as pulling together faculty members and researchers from many disciplines to help each of the teams, is really meritorious.”

Both teams will showcase their work at the Momentum arts festival Thursday through Saturday, Sept. 19-21, at the Mini Maker Faire in Promenade Park in Toledo.

Drones monitoring algal blooms capture high-quality, low-cost data to protect drinking water, swimmer safety

Low-flying eyes in the sky are improving the accuracy of water quality assessments in the Great Lakes and the rivers that flow into them.

A new study at The University of Toledo finds drones armed with sensors are useful tools in the fight against harmful algal blooms, particularly for monitoring key spots within Lake Erie, such as near drinking water inlets and off the shore of public beaches.

Dr. Richard Becker used a drone to assess water quality on Lake Erie.

Researchers compared data gathered by the drones with satellite data and boat-based water sampling at 10 locations over Lake Erie and the Maumee River.

“We get the same results on both drones compared to more expensive and time-consuming measurements — including some made by probes put directly into the water,” said Dr. Richard Becker, associate professor in the UToledo Department of Environmental Sciences.

The technology places a new weapon in the arsenal of water treatment plant managers protecting the drinking water supply and public health officials monitoring beaches.

Filling the short-range surveillance gap left by more expensive remote-sensing methods such as satellites and aircraft, the unmanned aerial systems offer increased algae awareness due to their ability to hover below cloud cover and to be deployed on short notice.

“Detecting the threat of toxic algae as early as possible is critical, but it can be foggy for satellites looking through different layers of the atmosphere,” Becker said. “These drones are focused and have the ability to assess the condition at the shoreline, which people care about for swimming.”

Determined to safeguard the community’s health, Becker built and tested an algae monitoring drone in summer 2017, costing roughly $2,000. The drone took off from either the UToledo research vessel or the shoreline and flew at an altitude of between 5 and 10 meters above the water’s surface.

“Since drones are inexpensive, quick to launch, and can fly under cloudy skies, they have a lot of advantages that make up for the practical limitations of satellite, aircraft or boat-based observations,” Dr. Thomas Bridgeman, director of the UToledo Lake Erie Center and professor of ecology, said.

The study published in the Journal of Great Lakes Research shows Becker’s team in collaboration with Michigan Tech Research Institute successfully demonstrated the utility of drones outfitted with hyperspectral spectroradiometers to measure water-quality parameters that include chlorophyll, suspended minerals, cyanobacteria index and surface scums.

The sensor is used to produce a cyanobacterial index, which is a measure of algal bloom intensity.

“Dr. Becker and his colleagues show that sophisticated optical measurements of harmful algal blooms collected by drone-based sensors are just as good as similar measurements made from a boat,” Bridgeman said.

Bridgeman’s research team aboard the UToledo Lake Erie Center’s research vessel collects water samples and tracks harmful algal blooms once a week every summer throughout algal bloom season to help sound the early warning for water treatment plant operators.

“This new research means that harmful algal blooms impacting a swimming beach, a reservoir used for drinking water, or the Maumee River could be scanned by someone standing on the shoreline piloting a drone,” Bridgeman said.

Making measurements with a higher spatial resolution, the drones bridge a gap and complement the measurements of satellites, Becker said, but they’re not the stand-alone solution.

“A drone is not always the right tool for the job. A satellite or airplane is a better choice when talking about wide swaths of Lake Erie, instead of a targeted area,” Becker said.

The research was supported by NASA’s Glenn Research Center and the National Science Foundation.

UToledo breakthrough in how cells link together has implications in proliferation of cancer

For cancer to be successful — from its point of view, anyway — the disease has to find a way to break out beyond its initial foothold and spread throughout the body. Newly published research from The University of Toledo could bring fresh insight into one of the first ways cancers proliferate.

Dr. Rafael Garcia-Mata, associate professor of biological sciences, recently identified a protein complex that regulates how epithelial cells bond together in such tight connections.

Dr. Rafael Garcia-Mata identified a protein complex that regulates how epithelial cells bond together, a breakthrough that could advance cancer research.

There are more than 150 different types of epithelial cells that carry out essential functions in a wide variety of tissues. Those jobs include making our skin resilient, producing the mucus that lines and guards our airways, and helping with the absorption of nutrients in our digestive system.

The discovery, which builds on Garcia-Mata’s research focus of how cancer cells spread throughout the body, is intriguing because it explains the behavior of cells that are by far the most common starting place for cancer.

“Eighty percent of cancers originate from epithelial cells, and most cancers will have to disassemble the adhesion system to grow and spread,” Garcia-Mata said. “If we understand how these adhesive structures are built, we can also try to understand what happens when cancer cells disassemble them.”

His research was published June 27 in the Journal of Cell Biology.

Epithelial tissues line the outer surfaces of organs and blood vessels throughout the body, as well as the inner surfaces of cavities in many internal organs. Their ability to form nearly impermeable junctions enables them to establish boundaries that separate the inside of organs and other tissues from the outside environment.

The way epithelial cells link together is unique in biology and involves a large number of components that work in synchrony to control their assembly. However, the science behind how they manage to form such perfect bonds has up to now been elusive.

“The way these cells organize is very important. What we’ve identified is a new molecular mechanism that controls a lot of the properties that make the ‘right’ epithelial tissues,” Garcia-Mata said. “Understanding how they normally function allows you to understand what happens when things go wrong.”

The implications of these findings go well beyond cancer. Garcia-Mata’s research also helps explain how cells coordinate to generate organ cavities, which may broaden the knowledge of early development and organ formation. It could add significant new pathways for explaining conditions such as asthma and inflammatory bowel disease.

“A lot of diseases are essentially leaky epithelia. Understanding how these structures are modulated may help us learn why we get some of these diseases,” he said.

Garcia-Mata’s research into epithelial cells grew out of prior National Institutes of Health grant-funded work investigating how cancer cells spread away from the primary tumor.

“My lab studies basic, hardcore cell biology. This is where we make discoveries that lead to our ability to understand and target particular diseases, and the initial event in most cancers is the disassembly of these epithelial structures,” he said.

Collaborative research between colleges of Pharmacy, Natural Science and Mathematics uncovers potential cancer drug

Scientists at The University of Toledo investigating improvements to a commonly used chemotherapy drug have discovered an entirely new class of cancer-killing agents that show promise in eradicating cancer stem cells.

Their findings could prove to be a breakthrough in not only treating tumors, but ensuring cancer doesn’t return years later — giving peace of mind to patients that their illness is truly gone.

Dr. William Taylor, left, and Dr. L.M. Viranga Tillekeratne are investigating a small molecule that locks on to and kills cancer stem cells.

“Not all cancer cells are the same, even in the same tumor,” said Dr. William Taylor, a professor in the Department of Biological Sciences in the UToledo College of Natural Sciences and Mathematics. “There is a lot of variability and some of the cells, like cancer stem cells, are much nastier. Everyone is trying to figure out how to kill them, and this may be one way to do it.”

Taylor and Dr. L.M. Viranga Tillekeratne, a professor in the Department of Medicinal and Biological Chemistry in the UToledo College of Pharmacy and Pharmaceutical Sciences, reported their findings in a paper recently published in the journal Scientific Reports.

Cancer stem cells are an intriguing target for researchers because of their potential to re-seed tumors.

When doctors remove a tumor surgically or target it with chemotherapy drugs or radiation therapy, the cancer may appear to be gone. However, evidence suggests that a tiny subpopulation of adaptable cancer cells can remain and circulate through the body to seed new metastasis in far-off locations.

Those cancer stem cells, Taylor said, are similar to dandelions in a well-manicured lawn.

“You could chop the plant off, but it will drop a seed. You know the seeds are there, but they’re hiding,” he said. “You pull one weed out and another comes up right after it. Cancers can be like this as well.”

The small molecule they have isolated appears to lock on to those stem cells and kill them by blocking their absorption of an amino acid called cystine.

UToledo was awarded a patent for the discovery late last year.

For Tillekeratne and Taylor, uncovering a new class of therapeutic molecules could prove to be an even larger contribution to cancer research than the project they initially envisioned.

“At present, there are no drugs that can kill cancer stem cells, but people are looking for them,” Tillekeratne said. “A lot of drugs are discovered by serendipity. Sometimes in research if you get unexpected results, you welcome that because it opens up a new line of research. This also shows the beauty of collaboration. I wouldn’t have been able to do this on my own, and [Taylor] wouldn’t have been able to do it on his own.”

Tillekeratne also has received a three-year, $449,000 grant from the National Institutes of Health National Cancer Institute to continue testing the effectiveness of the newly identified therapy.

Because the molecules so selectively target cancer stem cells, it’s possible they could ultimately be paired with other chemotherapy drugs to deliver a more comprehensive treatment.

However, the researchers have found their agents show stand-alone promise in treating sarcomas and a subtype of breast cancer known as claudin-low breast cancer, which represents up to 14 percent of all breast cancers and can be particularly difficult to treat.